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Abstract. We propose a method to create macroscopic superpositions, so-called Schrödinger cat states, of
different motional states of an ideal Bose-Einstein condensate. The scheme is based on the scattering of a
freely expanding condensate by the light field of a high-finesse optical cavity in a quantum superposition
state of different photon numbers. The atom-photon interaction creates an entangled state of the motional
state of the condensate and the photon number, which can be converted into a pure atomic Schrödinger
cat state by operations only acting on the cavity field. We discuss in detail the fully quantised theory and
propose an experimental procedure to implement the scheme using short coherent light pulses.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm
effect, Bell inequalities, Berry’s phase) – 03.75.Fi Phase coherent atomic ensembles; quantum condensation
phenomena – 42.50.Ct Quantum description of interaction of light and matter; related experiments

1 Introduction

One of the most fundamental problems of quantum me-
chanics is the question why superposition states of macro-
scopic objects are never observed. The superposition prin-
ciple which is at the heart of quantum mechanics seems to
play no role in the macroscopic world. In order to illustrate
this fact, Schrödinger introduced his famous gedanken ex-
periment which leaves a cat in a superposition of dead and
alive [1]. Modern measurement theory explains this by de-
coherence according to the coupling of the observed quan-
tum system (the cat) to the environment. The timescales
involved here are such that the decay of a macroscopic su-
perposition is too short for an experimental observation.

The main interest has thus shifted to mesoscopic cat-
like states where decoherence effects can be controlled
much better and one may hope to understand the transi-
tion from quantum mechanical to classical behaviour. In
quantum optics most of the work concentrates on the two
different schemes where mesoscopic superposition states
have been achieved experimentally: the motional degrees
of freedom of a single trapped ion [2] and the light field
in high-finesse optical cavities [3]. More recently, the ex-
istence of mesoscopic superposition states has also been
shown by the interference of C60 molecules [4].

With the advent of Bose-Einstein condensation in di-
lute atomic gases (for recent overviews see [5–7]) one can
now think of preparing multi-atom superposition states of
up to one million atoms. This would allow the investiga-
tion of completely different decoherence channels such as
atomic collisions and light scattering. Zoller and coworkers
have proposed a system of two interacting Bose-Einstein
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condensates, the ground state of which can be tailored
to become a Schrödinger cat state of two condensates of
different internal atomic state [8].

In contrast to this, our proposal results in a mesoscopic
superposition state of a condensate in two (or more) mo-
tional states. This would allow for spatial separation of
the two components and hence, for instance, for the in-
vestigation of decoherence effects as a function of the dis-
tance between the condensates. The basis of our scheme
is the scattering of a condensate by the light field of a
high-finesse optical cavity which initially is prepared in a
superposition state of different photon numbers such as
a weak coherent field. The scattering process is analogous
to the scattering of a single atom off a quantized light
field [9] and leads to a final state which entangles the con-
densate external degrees of freedom and the cavity pho-
ton number, that is, a Schrödinger cat state. Erasing the
“which path” information stored in the cavity then yields
a condensate state where either all atoms populate one
quantum state of motion or all atoms populate another.
This is qualitatively different from atom optics with con-
densates scattered off classical light fields [10–13] where
each individual atom is in a superposition state. Our sys-
tem can also be considered as the atom optics analogue
of a recently proposed scheme for the preparation of a cat
state formed by light [14] where the role of atoms and
photons has been interchanged.

Apart from the possibility of preparing cat states
as discussed here, the interaction of a condensate with
the light field of a cavity is an interesting subject in
itself and allows numerous other applications, too. For
example, this system has been proposed to manipulate
quantum statistical properties of the condensate [15,16],
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for amplification of matter waves [17], and for measure-
ments on condensates [18,19]. We will thus base our dis-
cussions on a general fully quantized model for the inter-
action of a non-interacting Bose gas with a single cavity
mode. This allows us to investigate in detail how a coher-
ent pump of the cavity and incoherent cavity decays effect
the coherence properties of the condensate.

This paper is organized as follows. In Section 2 we dis-
cuss in an effective single-atom model the main features of
the interaction of a condensate with a high-finesse cavity
and show how this can be exploited to prepare an ideal
cat state of the external degrees of freedom of the conden-
sate. In Section 3 we then introduce the full many-particle
model and discuss in detail all the steps and their exper-
imental feasibility which are required for the preparation
of a cat state. The comparison with actual experimental
parameters shows that even with low efficiency only su-
perposition states of two atoms can be achieved today,
but an improvement of the optical cavities by one order
of magnitude would allow to obtain mesoscopic superpo-
sition states of approximately ten atoms. We finally sum-
marize our results in Section 4.

2 Idealised case

2.1 Mean-field description

We will first discuss the example of the preparation of
a perfect Schrödinger cat state of a condensate under
ideal conditions. This will allow us to demonstrate the
basic principles of our scheme and to discuss the essential
physics of the model system. We will turn to a more ac-
curate treatment of the system in Section 3 and discuss
the necessary parameter regime and the experimental fea-
sibility in more detail.

Our system consists of N identical two-level atoms of
mass M with position and momentum operators x̂n and
p̂n, n = 1...N , and an optical cavity which supports a
single mode with wave number k described by the an-
nihilation and creation operators a and a†. The cavity
is assumed to be lossless and its resonance frequency far
enough detuned from the atomic transition such that we
are allowed to adiabatically eliminate the atomic excited
states and to neglect the possibility of spontaneous decay
of the atoms during the interaction time with the cavity.
The full Hamiltonian for the compound N particle and
cavity system is then given by

H =
N∑
n=1

[
p̂2
n

2M
+ U(x̂n, t)a†a

]
. (1)

Here U(x, t) = U0 cos2(kx) exp(−v2
z t

2/w2) is the sinu-
soidal optical potential created by a single cavity photon.
U0 is related to the atom-cavity coupling g and the de-
tuning ∆a of the atomic resonance frequency from the
cavity frequency by U0 = g2/∆a. The time dependence
of the potential is according to the transverse Gaussian
field intensity with waist w as the atoms travel through
the cavity with a constant velocity vz .

Note that we are dealing here with a simplified one-
dimensional model which assumes that the transverse size
of the condensate is small compared to the cavity waist
during the interaction time. Moreover, in the Hamilto-
nian (1) we have neglected atom-atom interaction terms
as arise from binary collisions and due to the dipole-dipole
interaction mediated by the cavity mode(s) [20,21]. This
is justified because, as we will see later, for practical pur-
poses the number of atoms and hence the density is very
small and because we are working in a parameter regime
where spontaneous atomic decays can be neglected.

Since we neglected any cavity pumping and cavity de-
cay, the photon number is conserved and the Hamiltonian
can be split into a sum of its projections onto the m pho-
ton subspaces,

H =
∑
m

H(m)|m〉〈m|, (2)

H(m) =
N∑
n=1

[
p̂2
n

2M
+ U(x̂n, t)m

]
. (3)

We can thus study the time evolution in each of these sub-
spaces independently. In order to further simplify the dis-
cussion, we now apply the mean field approximation, that
is, we assume a Bose-Einstein condensed atomic system at
zero temperature where all atoms occupy the same wave
function. Tracing the Hamiltonian H(m) over all particles
but one we obtain the mean-field m-photon Hamiltonian

H
(m)
MF =

p̂2

2M
+ U(x̂, t)m+ (N − 1)

〈
p̂2

2M
+ U(x̂, t)m

〉
(4)

where the expectation value has to be taken with respect
to the momentary condensate wave function ψ(t). This
last term gives a uniform energy shift to H(m)

MF and hence
does not effect the dynamics of ψ(t). However, it gives a
different phase to the different photon number subspaces
and thus can become important for subsequent measure-
ments on the photon state.

2.2 Preparation of a Schrödinger cat state

Let us now sketch our proposal for the generation of an
atomic Schrödinger cat like state. Initially the condensate
is confined in the ground state of an atomic trap which
is placed slightly above a high finesse optical cavity. The
cavity is prepared in a superposition of the vacuum state
and the single photon Fock state,

ψc =
1√
2

(|0〉+ |1〉) . (5)

At time t = 0, the condensate is released from the trap
and a momentum kick of ~k is imparted to the atoms. Al-
ternatively, one could think of setting up the cavity with
a small angle to the horizontal axis, such that the con-
densate atoms have a transverse momentum of ~k with
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respect to the cavity axis at the time of their interaction
with the cavity field. Assuming that the spatial size of the
atom trap is much larger than an optical wavelength, we
can treat the initial state of the atomic wavefunction as
a momentum eigenstate of one photon momentum. The
compound state of the system is thus given by a direct
product of the atom and cavity state

ψ(t = 0) = |p = ~k〉 ⊗ ψc. (6)

Then the condensate starts to fall under the influence
of gravity and for some time interacts with the different
components of the cavity field according to the Hamilto-
nian (4). While the zero photon component leads to a free
time evolution of the condensate wavefunction, the sin-
gle photon component imposes a periodic potential and
thus scatters the atoms. Formally, equation (4) is equiva-
lent to the interaction of atoms with a classical light field
and we will therefore recover all the scattering phenomena
well-known in that situation. In particular, for an appro-
priately designed interaction time and potential depth U0

Bragg scattering will occur and the condensate will be
totally reflected.

Note that this reflection of the condensate is performed
by a single photon in the cavity and occurs on the same
time scale as the scattering of a single atom. This can be
viewed in two ways. First, in a semiclassical picture the
photon simply creates an optical potential which all atoms
feel simultaneously. Alternatively, one might think of the
scattering of the condensate as a sequence of backscatter-
ing events of the photon by single atoms. Each of these
processes imparts a recoil of 2~k to one atom. However,
because of our earlier assumption of adiabatically elimi-
nated excited states of the atoms, the time during which
the photon is absorbed by an atom is negligible. The pho-
ton is thus immediately re-emitted into the cavity mode,
reflected by the cavity mirrors and can thus interact with
all atoms virtually simultaneously. The total momentum
of 2N~k transferred to the atoms is thereby taken over by
the cavity mirrors.

The total state of the system after the interaction of
the atoms with the cavity (neglecting a global phase) is
then given by the entangled state

ψ(t) =
1√
2

(
|~k〉 ⊗ |0〉+ eiα| − ~k〉 ⊗ |1〉

)
(7)

where the relative phase α of the two components arises
from the different internal energies of the system during
the interaction time. In the first component of the state
ψ all of the atoms are in the same momentum state |~k〉,
whereas in the second component all atoms are in the state
| − ~k〉. However, there is still information about the con-
densate state stored in the cavity, that is, a measurement
of the cavity photon number will project the condensate
wavefunction onto one of the momentum states | ± ~k〉.

In order to destroy this “which path” information we
may think of a measurement of the cavity state which
projects onto one of the two orthogonal states ψ± =
1/
√

2(|0〉± |1〉). If the outcome of the measurement is ψ±,

the final state of the compound system will be

ψf =
1√
2

(
|~k〉 ± eiα| − ~k〉

)
⊗ ψ± (8)

which is a product state of atomic and cavity degrees of
freedom in both cases. The atomic part of this final state
is a superposition state of all atoms going to one direction
or to the other, that is, a Schrödinger cat state. Hence
a measurement of the atomic position distribution suffi-
ciently below the cavity will yield all atoms either at the
left or at the right. However, recombining the beams later
will nevertheless give rise to interference.

3 Rigorous treatment

The model which we used in the previous section to de-
scribe the basic principles and arising phenomena of the
interaction of a condensate with a single cavity photon is
of course highly idealised. We will thus review all the steps
of this scheme in more detail in this section and discuss
the required parameter regimes and limits. In particular,
we will discuss under which conditions the atoms of an
initial zero temperature condensate remain confined to a
single quantum state.

3.1 Stochastic Schrödinger equation

In contrast to the previous section, we will now use a full
many-particle treatment of the system and include cav-
ity losses and a coherent pump for the cavity field. Since
we are more interested in the outcome of a single run of
the experiment rather than in ensemble averages, the ap-
propriate theoretical framework is that of the stochastic
Schrödinger equation (SSE) [22,23]. This provides us with
the time evolution of the many particle and cavity wave-
function conditioned on the measurement results. In our
case the SSE for the unnormalised wavefunction reads

d|Ψ(t)〉 =

{
−iHeffdt+

(
a√
〈a†a〉

− 1

)
dN

}
|Ψ(t)〉. (9)

Here dN is a stochastic variable equal to one if a photon is
detected in the time interval [t, t+ dt] and zero otherwise.
The effective many-particle and cavity Hamiltonian Heff

is given by

Heff =
∫

dxψ†(x)H1(x, t)ψ(x) + iη(a† − a)− iκa†a

(10)

where ψ†(x) and ψ(x) are the atomic field operators
which obey bosonic commutation relations, η is the pump
strength of the cavity, κ is the cavity decay rate, and H1

is the single-particle Hamiltonian

H1(x, t) = −∆x

2M
+ U(x, t)a†a. (11)
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d|Ψ(t)〉 =
X
m

1√
N !m!

n
−cm(t)κmψ†[φm(t)]N +Ncm(t)ψ†[−iH1φm(t)]ψ†[φm(t)]N−1

+ cm−1(t)η
√
mψ†[φm−1(t)]N − cm+1(t)η

√
m+ 1ψ†[φm+1(t)]N

o
(a†)m|0, 0〉dt

+
X
m

1√
N !m!

n
cm+1(t)

√
m+ 1

〈a†a〉 ψ†[φm+1(t)]N − cm(t)ψ†[φm(t)]N
o

(a†)m|0, 0〉dN. (17)

All of the discussions in this work are independent of the
detuning between the cavity and the pump field, since
this only leads to additional relative phase shifts between
the different photon number subspaces. For simplicity we
have thus assumed in equation (10) that the pump laser
is resonant with the optical cavity.

3.2 Preparation of the initial state

As before we assume that before the experiment starts N
atoms form a zero temperature Bose-Einstein condensate
confined in a trap which is placed slightly above the optical
cavity. The cavity is assumed to be in its vacuum state.
Given the condensate wavefunction φT in the trap, the
full initial state reads

|Ψ〉 =
1√
N !
ψ†[φT]N |0, 0〉 (12)

where |0, 0〉 is the vacuum state of no atoms and no pho-
tons, and we have defined the atom creation operator for
any normalised single-particle wavefunction f(x) as

ψ†[f ] =
∫

dxψ†(x)f(x). (13)

Before releasing the atoms from the trap the cavity has
to be prepared in the required initial state, ideally a su-
perposition state of the form (5). This could be achieved
in principle by the same technique which was successfully
used in the microwave regime [24]. This exploits a two-
level atom which is prepared in a superposition of ground
state and excited state by a π/2 laser pulse. The atom
then traverses the cavity thereby transferring the inter-
nal atomic state onto the cavity. In the optical regime,
however, this method is hard to implement according to
the short lifetime of the atomic excited state. A simple
(though imperfect) alternative would be to prepare the
cavity in a coherent state by use of the pump laser. For
a pump strength η equal to the cavity decay rate κ, the
steady state of the cavity (without interacting with atoms)
is a coherent state of mean photon number one. The to-
tal state of the system at time t = 0 immediately after
opening the atom trap then reads

|Ψ(t = 0)〉 =
e−1/2

√
N !

ψ†[φT]Nea
† |0, 0〉. (14)

This state contains both the zero and one photon state
with an equal amplitude of 1/

√
e ≈ 0.61.

3.3 Cavity and atom interaction

After the time t = 0 the condensate is accelerated by
gravity and for a certain time interacts with the cavity
field according to the time dependent optical potential
U(x, t). The interaction time T is approximately given
by T = w/vz with w being the cavity waist and vz the
transverse condensate velocity during the interaction. The
assumption of negligible spontaneous atomic decay then
reads T < 1/(Nγ), where γ = Γg2/∆2

a is the optical
pumping rate (Γ is the atomic linewidth).

As we have already seen in Section 2, the time evo-
lution of the atomic wavefunction depends on the cavity
photon number and therefore entangles the cavity state
and the atomic state. Assuming that within any subspace
of fixed photon number m all atoms remain in a single
wavefunction φm(t) for all times t > 0 leads to the ansatz

|Ψ(t)〉 =
∑
m

cm(t)
1√
N !m!

ψ†[φm(t)]N (a†)m|0, 0〉 (15)

with the initial condition φm(t = 0) = φT for all values
of m. The coefficients cm(t) represent the time dependent
amplitude of the m photon Fock state. Hence the time
evolution of |Ψ(t)〉 is

d|Ψ(t)〉 =
∑
m

1√
N !m!

{
ċm(t)ψ†[φm(t)]N

+Ncm(t)ψ†[φ̇m(t)]ψ†[φm(t)]N−1
}

(a†)m|0, 0〉dt. (16)

On the other hand, applying the SSE (9) to the state (15)
yields

see equation (17 ) above.

Comparing equations (16, 17) we see that in general the
state of the system will not remain in the form of (15)
during the time evolution. Hence the interaction of the
condensate with a quantised cavity mode leads to heat-
ing of the atoms. There are two limiting cases, however,
where this heating effect can be neglected. First, if the
cavity state is a coherent state of high intensity (standard
deviation of the photon number much smaller than the
mean photon number), the atomic dynamics becomes ef-
fectively that of an interaction with a well defined field
intensity. In this case there exists a unique atomic wave-
function for all photon number subspaces. Thus the total
state of the system at any time is a product state of the
atomic state, where all atoms occupy this unique wave-
function, and a coherent cavity state. This semiclassical
limit has been investigated in detail in reference [19].
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The second case which is consistent with equation (15)
is that of a vanishing pump strength η = 0, meaning that
the driving laser has to be switched off before the con-
densate enters the cavity mode. Note that, in principle, a
finite cavity decay rate κ does not destroy the form (15) of
the wavefunction. However, the non-Hermitian time evo-
lution in this case changes the relative amplitude of the
various photon number states even if no actual quantum
jump occurs. Hence the cavity will no longer act as a 50–50
beam-splitter even for the perfect initial cavity state (5).
On the other hand, if a photon is detected at time t, the
corresponding quantum jump will change the relative am-
plitudes of the photon number states and will change the
partial wavefunctions by φm(t+dt) = φm+1(t). According
to the random time at which such a jump occurs, it is no
longer possible in this case to obtain a well-defined final
state after the interaction of the condensate with the cav-
ity by a proper adjustment of the system parameters, such
as interaction time and optical potential depth. Finally,
for the initial state (5) a quantum jump is tantamount
to a complete measurement of the cavity state and thus
leaves the system in a well defined state without cat-like
coherence.

Therefore, although quantum jumps do not in princi-
ple destroy the general structure (15) of the atomic wave-
function, cavity decay should be suppressed for the sake
of controlability of the final state. Moreover, in order to
obtain full knowledge of the state of the system, photons
leaving the cavity need to be detected with unit efficiency.
This implies that the interaction time T must be short
compared to 1/κ.

Now let us compare this with the interaction time
which is necessary to achieve complete Bragg reflection.
In the Bragg regime an atom will be scattered from an
initial state with momentum ~k into a final state −~k
without significant population of other momentum states.
Therefore the required energy uncertainty is of the order
of the recoil energy ~ωR, ωR = ~k2/(2M), and via the
Heisenberg uncertainty relation we obtain the Bragg con-
dition T > 1/ωR. Observation of Bragg reflection in our
system thus implies a cavity decay rate of the order of the
recoil frequency, κ ≈ ωR. Considering the case of lithium
(the lightest alkali atom for which condensation has
been achieved experimentally) and the parameters of the
high-finesse cavities used in the single-atom experiments
[25,26], the cavity lifetime has to be increased by about a
factor of 20 which can be obtained by increasing the cav-
ity length by this factor. Accordingly the mode volume
increases by a factor of 203/2 and hence the cavity-atom
coupling strength is reduced by one order of magnitude.
Using the conditions for small atomic decay and small
cavity decay κ, γ ≈ ωR (for a single atom) finally gives an
optical potential depth U0 ≈ 2.4ωR. Numerical integration
of the SSE (without pump) shows that this value is ap-
proximately a factor of 5 to 10 too small to achieve Bragg
reflection within the interaction time T . Hence, although
the ideal situation of complete Bragg reflection with a sin-
gle photon is not experimentally feasible at the moment,
it might become possible within the next few years.

However, for the preparation of a cat-like state, Bragg
reflection is not necessary. In the absence of the driving
laser the dynamics guarantees that within any m photon
number subspace all atoms populate the same wavefunc-
tion φm(t) at all times. Without fulfilling the Bragg con-
dition, the final states φm(t) after the atom-cavity inter-
action will in general not be orthogonal. In other words,
detecting a single atom in the initial momentum state ~k
after the interaction will not lead to a collapse of all atoms
into this state. On the other hand, if the cavity was ini-
tially prepared in a superposition of the zero and one pho-
ton state and a single atom is detected in a momentum
state different from the initial one, all other atoms will col-
lapse into the wavefunction φ1(t) and a cat-like behaviour
is recovered.

3.4 Measurement of the cavity state

After the interaction of the condensate with the cavity
field, the system is thus in an entangled state of form (15).
Therefore a measurement of the cavity photon number
will give precise information on the state of the conden-
sate. For example, cavity decay will project the atomic
superposition state to a single component. It is thus nec-
essary to erase the information stored in the cavity. We
will discuss several possibilities how to perform this in the
following.

As we have shown in Section 2, the ideal measure-
ment of the cavity state for this purpose would be one
which projects onto one of the orthogonal states ψ± =
1/
√

2(|0〉 ± |1〉). In this case the state of the system after
the measurement is a product state (8) of atomic state and
cavity state and thus the subsequent atomic dynamics is
decoupled from the cavity dynamics. However, a measure-
ment of this kind is difficult to realise experimentally.

Another possibility is to detect the cavity state by a
homodyne measurement, that is, mixing the light trans-
mitted through the cavity with a strong laser beam. How-
ever, in general after the interaction with the condensate
the cavity is not in a coherent state even if it was initially.
Homodyning will thus add a lot of noise to the system.
Our numerical simulations show that starting from the
ideal state, equation (7), after homodyne detection the
final state has a probability of being in the Bragg scat-
tered beam with a nearly uniform distribution in the in-
terval [0, 1]. Therefore, this procedure in principle creates
an atomic cat state but with a random amplitude of the
two components.

A third way to erase the cavity state is to switch on the
driving laser again after the condensate has left the cav-
ity mode. This mixes the cavity state with the coherent
state of the laser and thereby information is destroyed.
Together with spontaneous cavity decays this gives rise
to a final product state of atomic and cavity degrees of
freedom. Although this method is experimentally easy, it
suffers from the same problem as the homodyne detection
scheme, that is, according to the random times of the cav-
ity decays the final atomic state has an unknown relative
amplitude of the two momentum components.
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Instead we propose another method which consists of
a short pulse of the driving laser and postselection of the
final state on the zero photon cavity state. This leads to
a well-defined final state with a sufficiently high efficiency
as we will show in the following.

Suppose that after the condensate-cavity interaction
the system is in a state of form (15). Then the driving
laser is switched on for a time τ which is short compared
to the cavity decay time 1/κ. In general this implies that
τ also is short compared to the time scale of the dynamics
of the atomic degrees of freedom, which is of the order of
1/ωR. The Hamiltonian (10) thus reduces to

Heff = iη(a† − a) (18)

and the system state after the laser pulse is given by

|Ψ(t+ τ)〉 = e−iHeffτ |Ψ(t)〉

= e−(ητ)2/2
∑
m

cm(t)
1√
N !m!

ψ†[φm(t)]N

× eητa
†
(a† − ητ)m|0, 0〉. (19)

Projecting onto the zero photon subspace, which is tan-
tamount to a postselection on the case where no cavity
decay photons are detected, yields the final state

|Ψf〉 = e−(ητ)2/2
∑
m

cm(t)
1√
N !m!

ψ†[φm(t)]N (−ητ)m|0, 0〉

(20)

the squared norm of which gives the probability of finding
the desired zero photon state. As an example let us assume
that the system is in state (7) before the final laser pulse
and τ = 1/η. Then the final state reads

|Ψf〉 =
e−1/2

√
2N !

{
ψ†[φ0(t)]N − eiφψ†[φ1(t)]N

}
|0, 0〉. (21)

This is a perfect Schrödinger cat state with a squared
norm of 1/e. The probability for this method of being
successful is thus 37%. Note, however, that this scheme
demands the detection of spontaneously emitted photons
with unit efficiency. For imperfect detection the final state
of the system will be an incoherent mixture of a cat state
with other superposition states of different wave functions
and different relative amplitudes. In this case the proposed
system will fail with a certain probability to create the
desired cat state. A similar effect occurs, if there is a finite
probability for photon absorption in the cavity mirrors.

4 Numerical examples

In this section we study a specific numerical example of the
system proposed in the previous section. The parameters
used here are those for N = 10 rubidium atoms and the
optical cavity used by Rempe and coworkers [25], with the
only idealisation that we increase the optical potential U0

by a factor of ten.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

 n

 P
(n

)

Fig. 1. Cavity photon number distribution P (n) after the
preparation laser pulse, step (ii), (black bars), and after the
condensate-cavity interaction time, step (iii), (grey bars). See
text for details and choice of parameters.

Therefore we use a cavity decay rate of κ = 400ωR.
Allowing for a certain probability of cavity decays during
the atom-cavity interaction, we set 2κT = 0.2 and hence
T = 2.5×10−4ω−1

R . The probability of spontaneous atomic
decay is set to the same order of magnitude by the condi-
tion Nγ = 2κ. This allows us to calculate the appropriate
value for the atom-light detuning and then the optical po-
tential depth U0 = 13 280ωR. The experiment which we
simulate proceeds in the following steps.

(i) The condensate is prepared initially in a trap which
is situated slightly above the cavity. The spatial size of the
condensate wavefunction is much larger than the cavity
wavelength, such that the momentum width is small com-
pared to the photon momentum ~k. The trap is switched
of and the condensate falls due to gravity. The cavity is
initially in its vacuum state.

(ii) When the condensate enters the cavity, more pre-
cisely at position x = −w, a laser pulse is used to prepare
the cavity field in a coherent state. The length τ of this
pulse is assumed to be much shorter than the cavity decay
time and the laser intensity is chosen such that ητ = 1.
Hence the mean cavity photon number after the prepara-
tion pulse is one. The photon number distribution at this
time is shown by the black bars in Figure 1.

(iii) Then the condensate interacts with the cavity for
the time T . During this time, cavity decays and atomic
spontaneous emissions may occur according to the decay
rates κ and Nγ. If such an incoherent event happens, the
result of this experimental run is disregarded and the ex-
periment is repeated. For our parameters, the simulations
show that a quantum jump occurs with a probability of
approximately 0.25.

The transverse velocity of the condensate is chosen
such that after the interaction time T the condensate po-
sition is x = w. Due to the different decay probabilities
for different photon numbers, the cavity photon number
distribution changes during the time T . The final distri-
bution is shown by the grey bars in Figure 1. Hence, al-
though the cavity was prepared with equal amplitudes for
the zero and one photon states, the final state comprises
a higher amplitude for the zero photon state. According
to the different potential depths, the atomic wavefunc-
tions φn conditioned on the cavity photon number n are
scattered differently within the time T . In Figure 2 we
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Fig. 2. Momentum distribution of the partial wavefunctions
φn conditioned on the cavity photon numbers n = 0 (black
bars), n = 1 (dark grey), and n = 2 (light grey) after the inter-
action of the condensate with the cavity. See the description of
step (iii) in the text for details.
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Fig. 3. (a) photon number distribution in the cavity after the
second laser pulse, step (iv) in the text. (b) Probabilities of the
wavefunctions φn in the final state |Ψf〉. See text for details.

show the final momentum distributions for the three low-
est wavefunctions, m = 0...2. For the chosen parameters,
the scattered (single particle) wavefunction φ1 has a sig-
nificant overlap with φ0, whereas φ2 and φ0 are essen-
tially orthogonal. Note, however, that the overlap of the N
particle wavefunctions scales as∣∣∣∣ 1

N !
〈0, 0|ψ[φ1]Nψ†[φ0]N |0, 0〉

∣∣∣∣2 = |(φ1, φ0)N |2, (22)

where (., .) denotes the single particle scalar product. The
overlap of the N particle wavefunctions is thus of the or-
der of 0.001 for our parameters. By increasing the optical
potential U0 by approximately another factor of two it
can be achieved that the wavefunction φ1 has no zero mo-
mentum component instead of φ2. In this case, the final
Schrödinger cat state consists essentially of two orthogonal
single-particle wavefunctions. However, in the following we
will stick to the more general case of a finite overlap of the
wavefunctions.

(iv) Another laser pulse is applied to the cavity with
the same properties as the pulse in step (ii). The photon
number distribution after this step is shown in Figure 3a.

(v) Finally, the system state is projected onto the
zero photon subspace. Experimentally this is performed
by simply waiting for several cavity decay times. If a cav-
ity photon is detected during this time, the experimental
run is again disregarded, otherwise the required atomic
state is prepared. The probability of finding the zero pho-
ton state is approximately 1/3 according to Figure 3a.
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Fig. 4. Probability distribution P (n0) of detecting n0 atoms
in the state φ0. The two peaks at n0 = 0 and n0 = 10 occur
due to the φ2 respectively φ0 component of the Schrödinger
cat state, the binomial distribution around n0 = 4 due to the
state φ1 which has a nonzero overlap with φ0.

Together with the 75% chance that no photon was de-
tected during the interaction time T , see step (iii) above,
we obtain an overall efficiency of 0.25. Thus, in one out of
four experimental runs we will get a cat-like state of the
condensate. Figure 3b shows the probabilities

Pf(φn) =
∣∣∣∣〈Ψf |

1√
N !

ψ†[φn]N |0, 0〉
∣∣∣∣2 (23)

of finding the states φn in this final state. According to the
initially prepared coherent state instead of state (5) and
the different relative decay amplitudes during the interac-
tion time, the final state is not a 50–50 superposition state
of φ0 and φ1. However, we obtain numerically a propabil-
ity of 54% that all atoms are in state φ0 and of 38% that
all atoms are in state φ1.

It should be emphasised once more that in general
the wavefunctions φn are not mutually orthogonal. For
instance, in the numerical example considered here the
wavefunction φ1 has a relatively large component of the
initial zero momentum eigenstate, see Figure 2, and there-
fore a significant overlap with φ0. Hence, if the final state
is measured by counting the number of atoms n0 in state
φ0, the resulting atom number distribution has three dis-
tinct components, cf. Figure 4: first, a peak at n0 = 10
corresponding to the case where all atoms are in state
φ0. Second, a binomial distribution with a maximum at
n0 = 4 coming from the component where all atoms are
in state φ1. Third, if all atoms are in the state φ2 which
has no zero momentum component (see Fig. 2), no atoms
are detected in φ0 which gives rise to the peak at n0 = 0.
This multiply peaked atom number distribution is a good
indication for the cat-like nature of our final condensate
state since such a distribution cannot be achieved, for in-
stance, by scattering the condensate by a standing wave
laser beam, where one just gets a binomial distribution.

In a second numerical example, Figure 5, we chose pa-
rameters such that the Bragg condition is fulfilled and a
condensate of N = 10 lithium atoms is nearly completely
reflected by a single cavity photon. This requires an atom-
cavity interaction time T = 1/ωR and thus a cavity decay
rate κ = ωR/10. Compared to our previous example one
thus has to increase the length of the cavity by a factor
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Fig. 5. Bragg reflection of Li atoms: momentum distribution of
the partial wavefunctions φn conditioned on the cavity photon
numbers n = 0 (black bars), n = 1 (dark grey), and n = 2
(light grey). Parameters are N = 10, T = 1/ωR, κ = ωR/10,
U0 = 8.5ωR.

of about 240 (which gives a length of 2.8 cm [25]). The
calculated optical potential then is two orders of magni-
tude too small. Instead we use a value of U0 = 8.5ωR here.
Additionally, we now assume that the atoms are initially
in a momentum eigenstate of one photon momentum ~k
(black bar in Fig. 5). The parameters are chosen in such a
way that all effects related to the cavity pump field and to
spontaneous atomic or cavity decay are very close to those
presented in Figures 1 and 3. We thus concentrate on the
momentum distributions of the conditional wavefunctions
after the interaction of the condensate with the cavity,
Figure 5. We see that the wavefunction conditioned on
one cavity photon φ1 has a negligible component of the
+~k momentum state, but a probability of 0.96 for the
−~k state. The final state |Ψf〉, equation (20), is then to
a good approximation a state where all atoms are either
in the +~k or in the −~k state with a small admixture of
the state φ2 which contains both components. An atom
number distribution as in Figure 4 will thus show two
sharp peaks at n0 = 0 and n0 = 10 indicating a highly
non-classical state of the atoms.

5 Conclusions

We have investigated in detail the interaction of an ideal
condensed Bose gas with a quantized mode of an optical
cavity in the strong coupling regime. In the limit of a large
detuning of the light frequency from the atomic resonance,
scattering of the condensate works analogously to scatter-
ing of a single atom and, in particular, on the same time
scale. Nevertheless there are some important limitations
if the coherence of the condensate is to be preserved dur-
ing the scattering process. We find that coherent pumping
of the cavity field during the interaction with the conden-
sate destroys the condensate coherence, while spontaneous
cavity decay in principle does not lead to heating of the
condensate but limits the experimental precision. Hence,
for controlled manipulation of the condensate by one or
a few photons it is desirable to avoid spontaneous cavity
decay.

We have used these properties of the condensate
and cavity interaction to propose a method of preparing

a mesoscopic superposition, a so-called Schrödinger cat
state, of the external degrees of freedom of the condensate.
From our discussion of experimental parameters we con-
clude that an improvement of cavity parameters by only
one order of magnitude as compared to published values
will allow the transition from a gedanken experiment to a
real one.

For simplicity our discussions here were based on an
ideal Bose-Einstein condensate as the initial state of the
atoms. However, weak atom-atom interactions would not
qualitatively change the properties of the system. In this
case the details of the scattering process such as required
interaction times, amplitudes of scattered beams, and
atomic wavefunctions would be altered, but the entangle-
ment of the atomic state and the cavity photon number
would persist. In principle even a thermal atomic beam
could be used in such a setup. In this case one would
have to ensure that a single photon scatters the indi-
vidual atoms by more than the width of the initial mo-
mentum distribution. This is possible in principle either
by a narrow velocity filter, as for example in the experi-
ments by Rempe and coworkers [25], or otherwise by using
short interaction times and deep optical potentials (the
Raman-Nath regime of scattering theory). The resulting
Schrödinger cat state would then consist of two beams
which are defined by different ranges of momenta, rather
than by definite wave functions as in the case of a conden-
sate. However, experimentally it would then be hard to
achieve high enough atomic densities and sufficiently long
cavity life times which are required for the suppression of
decoherence during the interaction time of the atoms and
the cavity field.

This work was supported by the Austrian Science Foundation
FWF under project P13435-TPH and the SFB “Control and
Measurement of Coherent Quantum Systems”.
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